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Abstract

The theory of complexity spaces has been
introduced in [Sch95], where the applicability to
the complexity analysis of Divide & Conquer
algorithms has been discussed. This analysis has
been based on the Banach Fixed Point Theorem,
which has led to the study of biBanach spaces in
[RS98]. In [RS96] we have introduced the dual
complexity space as a convenient tool to carry out a
mathematical analysis of complexity spaces (cf.
also [RS98]). We recall that the complexity space
as well as its dual are weightable quasi-metric
spaces or, equivalently, partial metric spaces (cf.
[Sch95], [RS96] as well as [K'un93],[KV94] and
[Mat94]. Recently it has been shown in [Sch02a]
that partial metric spaces correspond dually, in the
context of Domain Theory, to semivaluation
spaces. Here, we show that the dual complexity
space is the negative cone of a biBanach norm-
weightable Riesz space (e.g. [BOU52] and [RS98])
and characterize the class of norm-weightable
Riesz spaces in terms of semivaluation spaces. In
particular, we show that the quasi-norm of an
element of such a Riesz space is the quasi-norm of
its projection on the negative cone. Hence, quasi-
norms are completely determined by partial
metrics, justifying, in this context, O’ Neill’s
analogy between these notions. In [Sch02a], it is
shown that quasi-uniform semilattices arise
naturally in Domain Theory, which motivates a
generalization of our characterization to the context
of norm-weightable quasi-uniform Riesz spaces.
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1) ¥re X.dlz,z)=0.

N¥r,y,2 € Xod(z,y) +dly,z) > dz,2)

If d i & quast-psendo-metric on X, then the finction d" defined on X x X by
dYz,y) = d(y, ), 15 also a quast-pseudo-metric on X called the congugate of d.

A quasi-pseudo-metric space is a pair (X, d) consisting of a set X together with a
quasi-psendo-metric d on X,

In case a quasi-pseudo-metric space is required to satisfy the Ty-separation axiom,
we refer to such a space as a quast-mefric space.

In that case, condition 1) and the Tj-separation axiom can be replaced by the
following condition:

) Ye,y € Xd(z,y) =dly,z) =06 1=y

If d 1s a quasi-(pseudo)-metric on X, then d* is a (pseudo)metric on X, where
Y,y € Xd'(z,y) = max{d(z,y), d(y,)}.

A quasi-pseudo-metric space (X, d) is called order-conver if d{z,2) = d(z,y) 4
d(y, z) whenever z <<y <41

A quast-(pseudo-metric d on X is said to be bicomplete if &* is a complete
(pseudo)metric on X [FL82).
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Examples: The function dy defined on R x B by d(z, ) = max{y - 7,0} 152 quasi-
metric on R such that (d))* is the usual metric on R.

The fanction dy defined on (0,00] x (0, 00| by do[z.) = max[j; - %,ﬂ] Baboa
quasi-metric on (0, oc|, where we have adopt the convention {hat i =),

The complexity quasi-metric) space has been introduced in [Sch05) as a partof the
development of a topological foundation for the complexity analysis of algorithms, In
(RS9 we have introduced the dual complexity (quasi-metric) space as an appropriate
tool to camry out & mathematical analysis of complexty spaces (see RS0

We recall that the complexity space (with range (0, oc]) i the pai (C,dc), where
C={fru= (0| E:inﬂ'“rlﬁl < o0} and d is the quasi-metric defined on
Chydelfg) = Yoy max[ﬁ - ﬁ,0}1 whenever f,g € C. d; is called in
(Sch03] “the complexity distance”, and intuitvely measure relative improvements in
the complexity of programs,

The dual complexty space (with range R} i mivoduced in [RSOE] as a pair
(€' de), where C" = {f s~ B [T, ™ f{n) < co} and dy I the quasimetric
defined on C* by df,g) = ). -, 2™ max{g(n) - f(n), 0}, whenever f,g € "

(C,de) i sometric to (C", de) by theisometry ¥ : (" = C, defned by U(f) = 1/f
(see [RSYG]).

A quasi-metric space (X, d) is weightable iff there exists a function w: X = R
such that Yz,y € X.d(z,y) + w(z) = d(y,2) + wly). The function w is called «
weighting function, w(z) is the weight of x and the quaskmetric d is weightable b
the function w. A weighted space is a triple (X, d, w) where (X, d) is a quasi-metri
space weightahle by the function w. A weighting function of a weighted quasi-metri
space s fading iff the space has points of arbitrary small weight.

We recall that the weighting functions of a weightable quasi-metric space are gen
erated by a unique fading weighting f (e [KV%4] or [Schl2a]) in the sense tha
each weighting is of the form £+ ¢ for some real mumber ¢ > 0,

Examples: The quasi-metric space (R d)) is weightable by the identity func
tion, wy(z) = . The quasi-metric space ({0, a0],dy) is weightable by the functio
() = *. The complexity space (C,dg) is weightable by the function wy wher
VfeCuelf) =Y, ﬁ The dual complexity space (C*,de.) s weightable by thy
function wg. where ¥f € C*.ue.(f) =}, 2 f(n).

We recall the following defnition from [Schd].

Definition 1.1 1f (X, d) is a quasi-metric space then (X d) is upper weightable it
there exists a weighting function w for (X, d) such that Yz, € X.d(z,y) <ufy). Wi
refer to such a function w as an upper weighting function. A weighted space (X, d,w
is upper weighted iff v is an upper weighting function,
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Examples: The quasi-metric space (R, dy ) is upper weightable by the function ),
the quasi-metric space ((0), 5|,y 1s upper weightable by the function w5, the com-
plexity space (C, ) 1s upper weightable by the fanction wg, while the dual complexity
space (", de+) is upper weightable by the function wg..

A quast-uniform space s a pair (X, U) consisting of a set X with a filter [f on
X % X such that

)Y eUACT
W U U oV Cl

In that case, {f s called a quasi-uniformity on X and its elements are referred
to as entourages. The preorder associated with a quasi-uniform space (X, 1) is the
relation <y; defined to be the intersection of all the entourages of Uf.

A subfamily B of a quasi-uniformity I is a base for I if each entourage contains
a member of B,

The quasi-umiformity U, generated by a quasi-pseudo-metric d on a set X is
the flter generated on X x X by the set of relations (B,sq),, where Ve > (.B, =
{(z,y)|d(z,) < €}. Two quasi-pseudo-metrics are equivalent iff they generate the
same quasi-uniformity. Two quasi-psendo-metric spaces are equivalent iff their quasi-

psendo-metrics are equivalent.

The topology T (U) associated to a quasi-uniformity f on a set X is the topology
generated by the neighbourhood filter base U[z) = {U/[z]| U € U}, whereVz € X YU €
U.Ult] =yl (z.y) €U},

1f U is & quasi-uniformity on a set X then the trace quasi-uniformity |4 of f on
a subset A of X is defined by: U|A = {U'n(Ax A)|U € U}.

If (X, U) and (¥, V') ave quasi-umform spaces, then the product quast-uniformity
U x V is the set of all binary relations B on X x Y, such that there isa U € If and
aV €V such that for each (z,y) m X x Y, B|(z,y)] = U[z] x V[y. The topology
induced by the product quasi-uniformity is the product topology.

A funetion f: (X.U) = (Y.V) is quasi-uniformly continuous if ¥V € VU €
U F(U) C V. where fAU) = {(f(x), f(u)| (z,y) € U}. A quasi-unimorphism
f:(X,U) = (Y,V) is a bijection such that both f and f~" are quasi-uniformly con-
timuous.

In case the associated preorder of a quasi-pseudo-metric (quasi-uniform) space s a
Iimear preorder we refer to the space as a finear quasi-pseudo-metric (quasi-uniform)
space.

A uniform space is a quasi-uniform space (X, 1) which i such that ¥/ € .U €
. Given a quasi-uniform space (X, ) then the uniform space associated fo (X, is
defined to be the space (X, *) where Uf* = {V|V C X x X and 31" € f such that V
20nU7).
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A weak quasi-pseudo-mefric (veak quost-unform) jom semilattce s a quasi
pseudo-metric (quasi-uniform) space which 15 a join semilattice for its associated
preorder. We say that a quasi-pseudo-metric space (X, d) has a maximum ; € X if
1<z forall 2 € X where <, is the associated preander of (X, d).

The terminology of quast-pseudo-metric (quast-uniform) (sems lattoe is reserved
for quasi-pseudo-metric (quasi-uniform)] spaces which are (sem)lattices for which
the operations are quasi-uniformly continuous with respect to the product quasi-
uniformmity g Uy (U x U). This is i accordance with the termimology used for the
theory of umform lattices (e, [Web9L) and [Web).

As discussed in [Sch(12a], quasi-umform (semlattces arise naturally m Domain
Theory and inchude in particular the class of totally bounded Scott domains diseussed
m Syl the Baire quasi-metric spaces of [Mat3] as well as the complexity spaces
of [Schds.

Each of these structures turms out to satisfy an “optimality condition”, which is
tightly related to compactness (cf. [Schila)).

An optimal week quasi-pseudo-metric join semilattice is a weak quasi-pseudo-
metric join semilattice (X, d) such that d(zUy,y) = d{z,y) forall 2.y € X.

We recall that a quasi-pseudo-metric jomn semilattice (X, d) 3 optimal 1 and only

i forall z,y2 € XdlzUzyUz) < dlz,y) (ch [Schd]). We remark that this
equivalent condition to optimality is exactly the more familiar notion of L-nvariance
as discussed i [Gieb]. Hence we obtain that any optimal weak quasi-pseudo-metric
oin semilattice is a quasi-psendo-metric join semilattice and we will simply refer o
siuch structures n the following as "optimal quasi-metric jom semilattices”.

We recall the following useful generalizations of valuations (e, [Bir8d]) to the

context of semilattices, ntroduced n [Sch(2a]:
(X, <) s a join semilattice then a function f: (X, <) = R" is joun-modular f

e,y 2 € X.flyllz) = flzlz) > fly) - flzUy)

and | 3 co-join-modular iff
Yo,y2€ X flylz) - flelz) < fly) - flely)

A join valuation on a jomn semulattice 1s a jom-modular increasing function on this
semilattice. A join co-valuation on a join semilattice i a co-join-modular decreasing
function on this semilattice.

A real-valued function f on a join semilattice (X, C) is called positive (negative)
it¥ey e XoTy= fla) < flyflz) > fly)
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In the following section we recall the main definitions and results of [RS98] on
norm-weightable biBanach spaces.
We provide & hrief motivation for the study of hiBanach spaces in connection to
complexity spaces.

We recall that the complexity analysis of Divide & Congquer algorithms involves
functionals on complexity spaces of the following type:

(/)= . ifn =1 thenc ke af[%) +().

Since these functionals are defined in terms of the pointwise operations of addition
and of scalar multiplication, which intuitively reflect operations carried out by the
algorithm on the given datastructures, it s nabural to equip complexity spaces with
corresponding operations. This approach directly leads to the study of (semi)linear
spaces,

Also, in Sch3] the complexity analysis of Divide & Conquer algorithms has been
carried out via the Banach Fixed Point Theorem. The version of the Banach Fixed
Point Theorem used n [SchO3] however is formulated i terms of bicomplete quasi
metric spaces, rather than in terms of say hiBanach spaces, as one might expect.

In the following section, we provide the necessary definitions in order to formulate
the new approach via biBanach spaces (cf. [RS98]). We also recall the useful notion
of norm-weightedness from [RS98], which will allow us to show that the weight of the
dual complexity space s the restriction of a quasi-norm of a hiBlanach space.

2 Norm-weightable biBanach spaces

An ondered linear space is a quadruple (E, C, +, ) such that (£, 4, ) is a linear space,
say with neutral element 0 and (E, C) is an order such that

() Yry.zeXeCy=a42Cy+2
(2)¥re E¥AeR™.220= Mz J0.

Remark: [In any ordered linear space, conditions (1) and (2) in fact imply conditions
(1') and (2') obtained from (1) and (2) by replacing the implication by an equivalence
(cf. [BOUS).

An element r of an ordered linear space (E, C, +,-) 1s positive (negative) iff z 30
(rC0), where 0 is the neutral element of the linear space.

In our context a semalinear space on B s an ordered triple (E, +,-), such that
(E,+) 1s an Abelian semigroup containing the neutral element 0, and - is a function
from R* X E to E such that for all z,y € E and a,b € R*: a-(b-2) = (ab) - 1,
(a4b) r=(a-z)+(b-z)a-(x+y)=(a-2)+(a-y)and 1.2 =2.
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We recall that every semilinear space is a cone in the sense of Keimel and Roth
[KR%. In the context of this paper we use this termmology rather than the one of
semnilinear spaces (as used i RS9 The motivation for this is that in the context

of Riesz spaces, the tennuinology of cones i traditionaly sed (e.g. [BOUS2)).

We remark that for a lnear space £ (on R the traditional definition of a cone
with top 0 is a subset of E which s closed under addition and under positive scalar
multiplication. It is easy o verify that in the context of linear spaces the two notions

of a cone coincide.

Example: The set of all positive elements of an ordered inear space forms a cone.
which we refer to as the postfive cone of the space. Similarly, the set of all negative
elements of an ordered linear space forms a cone, which we refer to as the negative

cone of the space.

Let (E,+,) be a lear space on B A quasi-nom on £ is a nomnegative real-

valued function || on £ such that for all 2,y € £ and a € ™

(1) |2 = |-2| =04 2 = 0 (where 0 denotes the neutral element of (E, +));
i) o] =alal;
i) +1 ¢ ] + .

Note that the function || defned on £ by ]’ = mex{|,|-2]], for all

1€ E. isanom on E,
If a quasi-norm || exists on a lmear space E, we say that the lear space is
quast-normalizable and refer to the pair (E, .|} as a quasi-normed near space.

The quasi-norm | induces, in & natural way, a quasi-metric dj | on £, defined
by

dyy(z.y)=Jy-2| forall 2,y € E.
For a given quasi-normed lmear space (E, .|, we refer to the order associated to
the quasi-metric dy as the order associated to the quasi-norm.

According to [RS98) a biBanach space is a quasi-normed linear space (£, . such
that the induced quasi-metric d  is bicomplete.

JOURNALOF
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Proof. Let E be a Riesz space with negative cone O~ and let f: C~ = R bea
quask-norm satisfying (1).

Since f satisfies (1), we obtain in particular that f is decreasing, since Vz,y €
Cady=0¢< fly=z) = f(y) - f(z) and hence f(y )}f[m).

We define f by: Y € E. f(z) = f(~) and verify that 7 satisfis (2) - (4).

To show (2), we remark that, since f is decreasing, Yz, y € E Szt y)=fllz+
y)) < flo ) < fla)+ fy) = F(z) + F(y). where the first inequality follows
from Lemma 3.2).

We remark that Yz € EYa € R*.(az)” =azN0=a(z0) = a(z").

To show (3), we remark that Yz € EYa € R, floz) = f((aa)") = flaa™
af(r”) =af(z).

o verify (4), we remark that if = 0 then clearly r~ = 0 and 2" = 0 and thus
Jo=fe)=fo=0

Conversely, we assume that f(r) = f(~z) = 0 for some z € E. Then we obtain
that f(z7) = f((~z)7) = 0 and thus f(z7) = f(z") = 0. Hence f(Jz]) < f(z*)+
flz7) = 0. 1f we assume by contradiction that z # 0 then in particular 2~ #
Oorz* #0 (since z =1~ - 17). Say wlog. that z™ # 0 and thus ™ C 0. Then,
since [z| C 2=, we have |z C 0 and thus f(|z) > f(0) =0, since f is negative. Thus
we obtain a contradiction.

To show the converse, we remark that that Vee B f(z) = flz~ -2) = flx”
(x*Uz7)) by (1"). Hence Yz € E. f(z) = f(2~ + ((~2*) N (~27))) by Lemma 3.2).
So by (f), we obtain that Vr € X. f(z) = ( [ .T+) ((=27) = (=2%)))) =
flo 4 (=) + (=2)) = flo™ + (=" +27)) = f(z").
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